
Intel Power Management
&

MSR_SAFE

Dr. Daniele Cesarini, HPC Software Engineer, CINECA
Dr. Robert Schöne, Faculty Computer Science, TU Dresden

Energy Efficiency in HPC, IT4Innovation, Ostrava (CZ), 29 January 2020

And God said, Let there be light: and there was light.
And God saw the light, and it was good; and God divided the light
from the darkness.

Third verse of the Book of Genesis

Maxwell’s Equations

What is ACPI?
ACPI (Advanced Configuration and Power Interface) is an open industry specification co-developed by
Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba. ACPI establishes industry-standard interfaces
enabling OS-directed configuration, power management, and thermal management of mobile, desktop, and
server platforms.

OS Power Management

Hardware: CPU, BIOS etc.

Software drivers
ACPI

Applications
Global system states (g-state)
G0 : Working (e.g. running and idle)

G1 : Sleeping (e.g., suspend, hibernate)

G2 : Soft off (e.g., powered down but can be restarted by
interrupts from input devices)

G3 : Mechanical off

Lower number means higher power

CPUs implement mechanisms to support these states.

BIOS and software drivers hide the difference of CPU implementations to support the ACPI
defined data structures and functions.

We will focus on
G0 states of
Intel architecture!

Enhanced Intel SpeedStep
Technology

EIST (aka Software Intel P-states)

• Cores which share the same voltage domain vote for a p-state

• The highest p-state for each core wins

• Voltage regulator per core

• Don’t need to vote for a common-state

• Each core has its own P-State

ACPI defines performance states (P-States)
• P-States correspond to different performance levels that are applied while the processor is actively executing

instructions.
• P-state is frequency and voltage operating point, both are scaled as the P-State increases.
• The driver provides an interface to control the P-State selection for the SandyBridge+ Intel processors.
• P-state takes advantages of turbo boost to increase the performance (core frequency higher than nominal).

Po
w

er
 (W

)

Core Voltage (V)

1.2
GHz

2.4
GHz

1.8
GHz1.5

GHz

2.1
GHz P0

P1

P2
P3Pn

Turbo Boost Technology
Turbo Boost is an Intel technology that opportunistically allows the processor to run faster than the nominal frequency if
the CPU is operating below power, temperature and current limits. Turbo Boost is not overclocking!
• Operates under OS control – only entered when OS requests higher performance state (P0).
• Max Turbo Boost frequency is dependent on the number of active cores and varies by processor.
• Turbo Boost will depend on workload, operating environment, and platform design.
• Turbo Boost frequency is selected by the firmware of the CPU (no OS control).
• Maximum turbo frequency is related to the number of active core (CPU version and architecture dependent).
• Turbo frequency is related to the mix of instructions executed in the last period of time not from CPU thermal condition (turbo frequency

for SIMD instructions ≠ scalar instructions).
• Energy efficient turbo* attempts to reduce the usage of turbo frequencies that do not significantly increase the performance monitoring

the stall cycles and selecting a next frequency that is predicted to be optimal. It is driven by the “Energy Performance BIAS Hint” setting.
• Turbo Boost Technology 3 -> use the core with the best performance per power for single threaded applications

*World Intellectual Property Organization
International Publication Number:
WO 2013/137859 Al
Pub. Date: Sep. 19, 2013

Performance and Energy
Bias Hint support

Intel 64 processors may support additional software hint to guide the hardware heuristic of power
management features to favor increasing dynamic performance or conserve energy consumption (affect
Turbo boost and Uncore Frequency Scaling).

• Software can program the lowest four bits of IA32_ENERGY_PERF_BIAS (0x1B0) MSR with a value from 0 - 15.
• Value of 0: corresponds to a hint preference for highest performance
• value of 15: corresponds to the maximum energy savings.
• A value of 7 (default) roughly translates into a hint to balance performance with energy consumption.

Sysfs interface: /sys/devices/system/cpu/cpu*/power/energy_perf_bias

Intel P-State
Machine Specific Registers (MSR)

Intel P-State driver make state transitions writing a 16-bit value to the IA32_PERF_CTL (0x198) register. Reads of
IA32_PERF_CTL (0x199) determine the targeted operating point. If a transition is already in progress, transition to a new
value will subsequently take effect. The current operating point can be read from IA32_PERF_STATUS.
IA32_PERF_STATUS is updated dynamically when target p-state is reached. Turbo boost can be also enabled/disabled by
IA32_MISC_ENABLE (0x1A0) registers.

IA32_MISC_ENABLE
Turbo boost
enable/disable

IA32_PERF_CTL

IA32_PERF_STATUS

Hardware-coordination feedback
mechanism APERF/MPERF

P-state = (delta_APERF / delta_MPERF) * max_pstate

Trick: APERF/MPERF can be also used to check the average frequency in the last period of time:
CPU freq = (delta_APERF / delta_MPERF) * nominal_freq

IA32_APERF

IA32_MPERF

APERF and MPERF are calculated as a different over a measurement interval. The interval is defined to be
the time between successive reads (delta_X) on that core.

MPERF (0xE7) is a counter that increments itself relative at the nominal frequency at every cycle in C0 status. While,
APERF (0xEB) increments itself coordinated at clock frequency in C0 status. Current P-state is computed like:

• Speed Shift vs P-state transitions
• Speed Shift : 1 ms
• P-state: 10 ms

• From efficient power state to
maximum performance

• Speed Shift: 35 ms
• P-state: 100 ms

If the processor is capable of selecting its next P-State internally, then the driver will offload this responsibility to the
processor (aka HWP: Hardware P-States). Skylake and newer architectures equip Intel SpeedShift Technology.

Intel SpeedShift Technology
HWP (aka Hardware P-States)

Configuration of
Intel SpeedShift Technology (HWP)

Uncore Frequency Scaling

https://patentimages.storage.googleapis.com/bb/a2/44/354a91cab2e94e/US20140208141A1.pdf
United States Patent Application Publication Pub. No.: US 2014/0208141 A1 Bhandaru et al. Pub. Date: Jul. 24, 2014

• The uncore frequency is set transparently for operating system and user.
• Uncore frequency is stalled when Package C-state enter in C3 or deeper state.
• The choice of uncore frequency is driven by the number of active cores and the traffic on the

on-chip interconnect.
• The uncore frequency scaling partly base their frequency decisions on the “Energy performance

BIAS Hints” setting.
• Uncore frequency is bounded to a max and a min frequency range specified in the

“MSR_UNCORE_RATIO_LIMIT”.
Trick: if max and min parameters are set to the same value the uncore frequency doesn't change!

Characteristics:

https://patentimages.storage.googleapis.com/bb/a2/44/354a91cab2e94e/US20140208141A1.pdf

Sysfs for intel_pstate (and cpufreq)

Sysfs Interface: /sys/devices/system/cpu/intel_pstate/*
• max_perf_pct: Maximum P-state the driver is allowed to set in percent of the maximum supported performance level (the highest supported turbo P-state).
• min_perf_pct: Minimum P-state the driver is allowed to set in percent of the maximum supported performance level (the highest supported turbo P-state).
• turbo_pct: Ratio of the turbo range size to the size of the entire range of supported P-states, in percent.
• status: Operation mode of the driver: “active”, “passive” or “off”.
• num_pstates: Number of P-states supported by the processor (between 0 and 255 inclusive) including both turbo and non-turbo P-states.
• no_turbo: If set (equal to 1), the driver is not allowed to set any turbo P-states.
• hwp_dynamic_boost: (equal to 1) controls the hardware P-States booting. Allowing intel_pstate to use iowait boosting in the active mode with HWP enabled.

Sysfs Interface: /sys/devices/system/cpu/cpu*/cpufreq/*
• scaling_governor: current governor
• scaling_cur_freq: current frequency (in 100mhz)
• cpuinfo_max_freq: max available frequency (in 100mhz)
• scaling_setspeed: set the current frequency (not available with intel_pstate)
• scaling_min_freq: minimum frequency that the driver can set (in 100mhz)
• scaling_max_freq: maximum frequency that the driver can set (in 100mhz)
• scaling_driver: current driver (intel_pstate, intel_cpufreq, acpi_cpufreq)
• scaling_available_governors: available governors
• related_cpus: current CPU id
• energy_performance_preference: set the energy performance preference for HW P-state
• energy_performance_available_preferences: available energy performance preferences
• cpuinfo_min_freq: minimum frequency that CPU can run (in 100mhz)
• base_frequency: nominal frequency (in 100mhz)
• affected_cpus: id CPU of the hyperthreading sibling

Turbo and AVX Frequencies

Recap and Numbers (1):
Turbo frequencies

• Are used when processor assumes (parts of) the processor
do(es) not require as much power as specified (e.g., the
TDP)

• Controllable influencing factors on power consumption:
• Activity on processor
• Frequency
• Voltage

• Sources:
• [HSW] Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., & Geyer, R. (2015, May). An

energy efficiency feature survey of the intel haswell processor. In 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop (pp. 896-904). IEEE.

• [SKY] Schöne, R., Ilsche, T., Bielert, M., Gocht, A., & Hackenberg, D. (2019). Energy Efficiency
Features of the Intel Skylake-SP Processor and Their Impact on Performance. arXiv preprint
arXiv:1905.12468.

Recap and Numbers (1):
TurboAVX frequencies [SKY]

• When activity includes “heavy” AVX instructions, the
nominal frequency is also considered turbo

• Multiple bands of frequencies:

𝐴𝐴𝑉𝑉𝑉𝑉 − 512
𝐴𝐴𝑉𝑉𝑉𝑉

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑥𝑥 #𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑛𝑛𝑛𝑛𝑢𝑢𝑢𝑢 → (𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚)

Recap and Numbers (1):
Turbo/AVX frequencies [HSW,SKY]

• https://github.com/tud-zih-energy/FIRESTARTER
• Test 1: Constant usage of AVX/AVX-512 on Haswell/Skylake
• Original set frequency: Turbo
Usage of AVX/AVX-512 frequency band
• When disabling turbo/going below nominal and

EPB!=performance core frequency is increased
• Uncore frequency can be lowered below the given range

(even though specification leaves room for lowering 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

https://github.com/tud-zih-energy/FIRESTARTER

Recap and Numbers (2):
AVX frequencies [SKY]

• When AVX and AVX-512 is handled differently, then
• A mechanism has to detect the presence of such instructions
• The mechanism has to act according to presence

• On AVX-enter (detection of AVX-instructions)
• Throttle out-of-order execution
• Request AVX-frequency (applied after 𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐)

• At AVX-exit (no more AVX-instructions)
• Start timer (𝑡𝑡𝑑𝑑𝑐𝑐𝑡𝑡𝑚𝑚𝑑𝑑) to fall back into normal mode

Recap and Numbers (2):
AVX frequencies [SKY]

oo
o

th
ro

ttl
in

g

t

fcore

highlow low

fstd

fAVX512

tthrott le tdelay

Recap and Numbers (2):
AVX frequencies [SKY]

• Measured via Hardware Performance Counters
• CORE_POWER.THROTTLE
• CORE_POWER.LVL2_TURBO_LICENSE

• Change FIRESTARTER, instrument with Score-P
• High phase: intense, AVX-512
• Low phase: power saving, mfence+cpuid

• 62 μs–75 μs 𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐
• ~700 μs 𝑡𝑡𝑑𝑑𝑐𝑐𝑡𝑡𝑚𝑚𝑑𝑑
• Worst case scenario: python+MKL
• Ooo throttling also when n. necessary (f=1.2 GHz)

Frequency also dependent
on data [SKY]

High core number
Wide SIMD instructions
Power varies with bits set in registers

vxorps %zmm0,%zmm8,%zmm8
vxorps %zmm1,%zmm9,%zmm9
…
vxorps %zmm7,%zmm15,%zmm15

Intel On-chip Power Manager

500us

The HW power manager of Intel Architectures is quite slow in frequency variation!
Literatures studied this mechanism and, for reverse engineering, discovered a 500us latency!

*

* Intel Broadwell architectures as well!

Intel On-chip Power Manager
for Core Frequency [HSW,SKY]

Intel On-chip Power Manager
for Uncore Frequency [SKY]

• Usually independently set, alternatively via MSR 0x620
• Manual: How long until takes affect 𝑡𝑡𝑑𝑑𝑐𝑐𝑡𝑡𝑚𝑚𝑑𝑑?
• Automatic: How long until detected 𝑡𝑡𝑐𝑐𝑐𝑐𝑚𝑚𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐?

Intel On-chip Power Manager
for Uncore Frequency [SKY]

CPUs
not

avail.

t

funcore

tcontrolloop tdelay tgap

tlatency

Workload 2W 1

Intel On-chip Power Manager
for Uncore Frequency [SKY]

• Change frequency
• While (time[current-1] not unexpected long)

• time[current++]=timer(L3-bound
workload)

CPUs
not

avail.

t

funcore

tcontrolloop tdelay tgap

tlatency

Workload 2W 1

Outliers

Intel On-chip Power Manager
for Uncore Frequency [SKY]

• Change frequency
• While (time[current-1] not unexpected long)

• time[current++]=timer(L3-bound
workload)

CPUs
not

avail.

t

funcore

tcontrolloop tdelay tgap

tlatency

Workload 2W 1

Up to 1.5 ms until
frequency is changed when
triggered manually

Intel On-chip Power Manager
for Uncore Frequency [SKY]

• For (…)
L1-bound workload

• While (time[current-1] not unexpected long)
• time[current++]=timer(L3-bound workload)

CPUs
not

avail.

t

funcore

tcontrolloop tdelay tgap

tlatency

Workload 2W 1

Up to 11.5 ms until
frequency is changed when
triggered by internal
mechanism

Dynamic Duty Cycle Modulation
DDCM (aka T-States)

Intel Xeon and Pentium M processors also support software-controlled clock modulation. DDCM was once known as T-
state (throttling state). This provides a means for operating systems to implement a power management policy to reduce
the power consumption and the temperature of the processor*. Power management software can write to the
IA32_CLOCK_MODULATION (0x19A) MSR to enable clock modulation and to select a modulation duty cycle.

*Bhalachandra, Sridutt, Allan Porterfield, and Jan F. Prins. "Using dynamic duty cycle modulation to improve energy efficiency in high performance computing." 2015 IEEE International
Parallel and Distributed Processing Symposium Workshop. IEEE, 2015.

Dynamic Duty Cycle Modulation
DDCM (aka T-States)

• You might find papers that say, this works great, probably
measured on Sandy Bridge processors

• On some systems (e.g., Sandy Bridge) DVFS is used, when all
cores agree to a common T-State – that’s why it’s “great”

• On Haswell, Skylake:
• Too many cycles skipped (compared to definition)
• Highest T-state not available

• In short: Not worth it (only special circumstances, i.e.,
processor without PCPs, slack-optimization)

• Source: [TState]

RAPL

HW Power Control - RAPL
Intel architectures implement a hardware power controller called Running Average Power Limit (RAPL).

Power Domains
Package Domain: limits the power consumption for the
entire package of the CPU, this includes cores and
uncore components.

DRAM Domain: is used to power cap the DRAM
memory. It is available only for server architectures. (no
client)

PP0/Core Domain: is used to restrict the power limit
only to the cores of the CPU (no new server).

PP1/Graphic Domain: is used to power limit only the
graphic component of the CPU (no server).

Time limiter
(typically from few ms

to seconds)
Power limiter

in Watts
(default TDP)

DVFS

N.B. in the last slides of this presentation there
is a complete description of RAPL registers

RAPL – Usage scenarios

• Hardware:
• Measure power consumption for Turbo frequencies
• Shift power budgets between cores and GPU

• Operating system/system vendors
• Set given TDP
• Monitor power consumption

• Users:
• Monitor power consumption

RAPL – Mechanism

• Two power ranges:
• Short term (typically 1 second?), typically exceeds TDP
• Long term (typically 60 seconds?), typically TDP

• Processor must stay within both limits
• Internally sampled with typically (at least) 1 ms
• Processor can use free budgets for Turbo mechanisms
• Other facts:

• Initially modelled, now measured
• Also on AMD since Zen

Sysfs for RAPL

Sysfs Interface: /sys/devices/virtual/powercap/intel-rapl/intel-rapl:X/intel-rapl:0:Y
• X = number of package but this numbering does not reflect the package ID, this level contain the package

domain information
• Y = 0 core domain, 1 gpu/uncore domain, 2 dram domain (the numbering can be different check the name)

• name: name of the domain and of the package ID
• max_energy_range_uj: range of the above energy counter in micro-joules
• energy_uj: current energy counter in micro joules
• enabled: enable/disable controls at domain level
• constraint_0_name: the name of the constraint 0 (usually long term window -> seconds)
• constraint_0_time_window_us: time window in micro seconds for the constraint 0
• constraint_0_power_limit_uw: power limit in micro watts for the constraint time 0
• constraint_0_max_power_uw: maximum allowed power in micro watts for the constraint 0
• constraint_1_name: the name of the constraint 1 (usually short term window -> milli seconds)
• constraint_1_time_window_us: time window in micro seconds for the constraint 0
• constraint_1_power_limit_uw: power limit in micro watts for the constraint time 1
• constraint_1_max_power_uw: maximum allowed power in micro watts for the constraint 0

Idle State (aka C-states)

Haswell EP
Haswell ULP
Broadwell
Skylake

Do not trust the last slide

• Check
/sys/devices/system/cpu/cpuX/cpuidle/stateY

to find out which (core) C-States your system supports
• This depends on:

• Server or desktop or mobile
• BIOS
• Kernel

• Package C-state X are only used when all cores in the system
(not only on one processor) are in core C-state X

• Otherwise, Package C2 can be used on the idling package
(reduce latencies)

HLT & MWAIT Instructions

HLT (opcod F4):
• HLT is an assembly language instruction which halts the logical processor (clock gating) until the next

external interrupt is fired.
• The HLT instruction is a privileged instruction, it requires ring 0 access, it can only be run by privileged

system software such as the kernel (not in Xeon Phi!).
• The HLT instruction is executed by the operating system when there is no immediate work to be done, and

the system enters its idle state (C1/C1E).

MWAIT (opcod 0F 01 C9):
• MWAIT is an assembly language instruction that provides hints to allow the processor to enter an

implementation-dependent optimized state.
• MWAIT accepts a hint and optional extension to the processor that it can enter a specified target C state

while waiting for an event.
• The MWAIT instruction can be executed only at privilege level 0.

C-State Transitions

NOTE:
• HLT or MWAIT instruction triggers the transition to lower power states.
• Legacy method of I/O reads from the ACPI-defined processor clock control registers, referred to as P_LVLx.

For legacy operating systems, P_LVLx I/O reads are converted within the processor to the equivalent
MWAIT C-state request.

• Interrupts (among others) triggers the transition to C0.

Whenever OS sees idling period (more on that later), it will
1. Predict the length of the idle period
2. Choose a C-state based on proposed residency

C-state Transition Times

C-state Exit
Latency Residency

C1 2 us 2 us

C1E 10 us 20 us

C3 33 us 100 us

C6 133 us 400 us

C7(s) 166 us 500 us

C8 300 us 900 us

C9 600 us 1800 us

C10 2600 us 7700 us

Haswell (EP)

C-state Exit
Latency Residency

C1 2 us 2 us

C1E 10 us 20 us

C3 40 us 100 us

C6 133 us 400 us

C7(s) 166 us 500 us

C8 300 us 900 us

C9 600 us 1800 us

C10 2600 us 7700 us

Broadwell

C-state Exit
Latency Residency

C1 2 us 2 us

C1E 10 us 20 us

C3 70 us 100 us

C6 85 us 200 us

C7(s) 124 us 800 us

C8 200 us 800 us

C9 480 us 5000 us

C10 890 us 5000 us

Skylake

Note: information given by intel_idle kernel module (3.10 to 4.6 version) -> fake! This information are conservative, they are faster
[CSTATE,HSW,SKY]!

Transition times from CX to C0
depend on

• Initial C-state
• The lower the C-state, the higher the latency

• Frequency
• Whether this has influence depends on the (Package) C-State

• How is the core waken up
• From another core? Where is the other core?
• By timer?

• Source:
[CSTATE] Schöne, R., Molka, D., & Werner, M. (2015). Wake-up latencies for processor idle
states on current x86 processors. Computer Science-Research and Development, 30(2), 219-
227.
[HSW,SKY]

Transition times from C0 to CX

• Entering a C-state can be delayed by hardware
• Waking up instantaneously after MWAIT can be fast

Source:
[LO2S-C] Ilsche, T., Schöne, R.,
Joram, P., Bielert, M., & Gocht,
A. (2018, May). System
Monitoring with lo2s: Power
and Runtime Impact of C-State
Transitions. In 2018 IEEE
International Parallel and
Distributed Processing
Symposium Workshops
(IPDPSW) (pp. 712-715). IEEE.

OS Power Governor
acpi_cpufreq

• Performance: sets the CPU statically to the highest frequency
• Powersave: sets the CPU statically to the lowest frequency
• Userspace: allows the user, or any userspace program running with UID "root", to set the CPU to a

specific frequency by making a sysfs file "scaling_setspeed" available in the CPU-device directory
• Ondemand: sets the CPU depending on the current usage. To do this the CPU must have the

capability to switch the frequency very quickly
• Conservative: much like the "ondemand“ governor, sets the CPU depending on the current usage. It

differs in behavior in that it gracefully increases and decreases the CPU speed rather than jumping to
max speed the moment there is any load on the CPU

Governors

intel_pstate

• Performance: always picks the highest frequency, race-to-halt machine or just don't care about
energy, very similar to “performance” of cpufreq (only 1% faster)

• Powersave: attempts to balance performance with energy savings is completely different than the
cpufreq "powersave" governor. The strategy is similar to cpufreq "ondemand", where the requested
P-State is related to the system load.

N.B. In Intel CPU the default Linux driver is intel_pstate and the default governor is powersave!

OS Power Governor
intel_pstate

• Active Mode With HWP: Start with HWP enable and cannot be disabled.

• performance: intel_pstate will write 0 to the processor’s Energy-Performance Preference (EPP) knob (if supported) or its
Energy-Performance Bias (EPB) knob (otherwise). This will override the EPP/EPB setting coming from the sysfs interface

• powersave: intel_pstate will set the processor’s Energy-Performance Preference (EPP) knob (if supported) or its Energy-
Performance Bias (EPB) knob (otherwise) to whatever value it was previously set to via sysfs (or whatever default value it was set
to by the platform firmware). This usually causes the processor’s internal P-state selection logic to be less performance-focused.

• Active Mode Without HWP: This is the default operation mode for processors that do not support the HWP feature. It also is used by
default with the intel_pstate=no_hwp argument in the kernel command line. However, in this mode intel_pstate may refuse to work
with the given processor if it does not recognize it.

• performance: It selects the maximum P-state it is allowed to use, subject to limits set via sysfs, every time the P-state selection
computations are carried out by the driver’s utilization update callback for the given CPU (that does not happen more often
than every 10 ms), but the hardware configuration will not be changed if the new P-state is the same as the current one.

• powersave: It generally selects P-states proportional to the current CPU utilization, so it is referred to as the “proportional”
algorithm.

• Passive Mode (also called intel_cpufreq): This mode is used if the intel_pstate=passive argument is passed to the
kernel in the command line (it implies the intel_pstate=no_hwp setting too). Like in the active mode without HWP
support, in this mode intel_pstate may refuse to work with the given processor if it does not recognize it. It implements
the CPUFREQ interface.

Sysfs Interface: /sys/devices/system/cpu/intel_pstate/*

max_perf_pct (%) = 100%0%

turbo_pct (%)

min_perf_pct (%)Percentual:

P-state levels: 0 num_pstates
Performance:

max_perf_pct (%) = 100%0% min_perf_pct (%)Percentual:

P-state levels: 0
Performance:

turbo_pstate

Turbo enable

Turbo disable
turbo_pstate

NOTE:
• Any changes made to these files are applicable to all CPUs (even in a multi-package system).
• In Intel p-state P0 the turbo boost take the responsibility to change the frequency with its own

policy.
• T-states existed to save processors from burning themselves up when things went very badly,

such as when the cooling fan failed while the processor was running as fast as it could (use
private temperature sensors).

Intel P-state driver: intel_pstate

Intel P-State Algorithm – PID control

Sysfs Interface: /sys/kernel/debug/pstate_snb/
• sample_rate_ms: sample rate in ms of algorithm execution, it can be changed to make the system more responsive to load

changes (default 10 ms)
• setpoint: is used to make the system use higher performance, even if the load is lower, setpoint can be adjusted to a lower

number. This will also lead to faster ramp up time to reach the maximum P-State (default 97)
• p_gain_pct: proportional gain coefficient in percentage (default 20)
• i_gain_pct: integral gain coefficient in percentage (default 0)
• d_gain_pct: derivate gain coefficient in percentage (default 0)
• deadband: limit the granularity of error coefficient for PID controller in percentage (default 0)

If there are no derivative and integral coefficients (equal to zero), the next P-State will be equal to:

next P-State = current P-State - ((setpoint - current cpu load) * p_gain_pct)

setpoint ∑

P

I

D

∑
+

+

+

+

-

current P-State

next P-StateCorrection∑

current cpu load

+
-

PID adjustment

Error

Error
<=

deadband

Y

N

Error = 0

Intel P-State – Userspace governor

Unfortunately, Intel P-state driver does not allow userspace governor! But intel_pstate driver is the default one on the
most HPC system based on Intel architecture.

So, we developed a hack which is able to inhibit the intel_pstate driver. You can find it in the school folder:
/gpfs/work/cin_powerdam_4/eeschool

What does the hack?
• Disable the turbo logic of intel_pstate driver
• Set the minimum frequency to the cpufreq interface of intel_pstate
• Set the maximum p-state using MSR
• Set the “energy performance bias hint” with the maximum performance value

How to run:
Switch-off the intel_pstate
$> mpirun -n $SLURM_JOB_NUM_NODES -ppn 1 $WORK/eeschool/off_ipstate.sh

Switch-on the intel_pstate
$> mpirun -n $SLURM_JOB_NUM_NODES -ppn 1 $WORK/eeschool/on_ipstate.sh

Idle governors

The Intel core C-states are requested by a power-aware kernel driver:

intel_idle: is a CPU idle driver that supports modern Intel processors. The intel_idle driver
presents the kernel with the duration of the target residency and exit latency for each
supported Intel processor. The CPU idle menu governor uses this data to predict how long
the CPU will be idle.

acpi_idle: implements the BIOS ACPI idle states. For this reason, it defines only four idle
states from C0 to C3 and it has no concept of core vs package C-states of Intel processors.
Moreover, it is inaccurate in C-state latencies and it has no concept of C-state energy
break-even.

Configuration of Idle States:
intel_idle vs acpi_idle

Intel_idle driver uses knowledge of the various CPUs to control C-states without input from system firmware (BIOS).
If you want control over C-states, you should use kernel parameters:

• intel_idle.max_cstate=0: this parameter disables the intel_idle, the Linux kernel will use the acpi_idle driver to use C-
states. System firmware (BIOS) provides a list of available C-states to the operating system using an ACPI table.

• intel_idle.max_cstate=n: Limit the maximum depth of C-state from n = 1 to 9 to specify maximum depth of C-state.
• Disable C1e: C1e can be disabled in BIOS setup for low latency. When C1E is enabled, the processor will try to lower

processor clock speed and voltage when it enters the C1 C-state, which might result in higher latency. From Linux kernel
3.9, the intel_idle driver treats C1 and C1E as separate states. So, the user can control whether C1E is used without
disabling it in BIOS setup.

• idle=poll: If a user wants the absolute minimum latency, kernel parameter “idle_poll” can be used to keep the processors
in C0 even when they are idle (the processors will run in a loop when idle, constantly checking to see if they are needed).
Hyperthreading should probably be disabled, as keeping processors in C0 can interfere with proper operation of logical
cores. It can improve the performance but will use a lot of power and make the system run hot, not recommended.

• idle=halt: C-states can also be limited to C1 with the kernel parameter “idle=halt”.
• Idle=nomwait: Disable mwait instruction for CPU C-states

acpi_idle (intel_idle disable):

intel_idle:

Dynamic control of C-States

To dynamically control C-states, open the file /dev/cpu_dma_latency and write the maximum allowable latency to it.

• This will prevent C-states with transition latencies higher than the specified value from being used, as long as the
file /dev/cpu_dma_latency is kept open.

• cpu_dma_latency=0: Writing a maximum allowable latency of 0 will keep the processors in C0 (like using kernel
parameter “idle=poll”)

• cpu_dma_latency=n: The value used should correspond to the latency values in
/sys/devices/system/cpu/cpuX/cpuidle/stateY/latency (where X is the CPU number and Y is the idle state). This
values corresponds to the transition time table in the previous slide.

• CPU idle states that have a greater latency than written to /dev/cpu_dma_latency should not be used.

Trick: One simple way to do this is by compiling a simple program that will write to this file, and stay open
until it is killed.

N.B. avoiding CPU to enter in deep C-states limit the turbo frequency!!!

Sysfs for intel_idle (and acpi_idle)

Sysfs Interface: /sys/devices/system/cpu/cpuX/cpuidle/stateY -> Y = idle states are numbered (not level!)

• name: Name of the idle state (e.g. C1).
• desc: Description of the idle state (or the mwait code).
• latency: Exit latency of the idle state in microseconds.
• power: Power drawn by hardware in this idle state in milliwatts (if specified, 0 otherwise).
• residency: Target residency of the idle state in microseconds.
• time: Total time spent in this idle state by the given CPU (as measured by the kernel) in microseconds.
• usage: Total number of times the hardware has been asked by the given CPU to enter this idle state.
• above: Total number of times this idle state had been asked for, but the observed idle duration was

certainly too short to match its target residency.
• below: Total number of times this idle state had been asked for, but certainly a deeper idle state would

have been a better match for the observed idle duration.
• disable: Whether or not this idle state is disabled.

MSR & MSR_SAFE

What are MSRs?

A model-specific register (MSR) is any of various control registers in
the x86 instruction set used for debugging, program execution tracing,
computer performance monitoring, and toggling certain CPU features.

Standard MSR linux driver
Only root can access

Access to MSRs is Critical

 Processors provide low-level access to critical information and settings
via MSRs
 Power: package (socket) and dram power
 Thermal: core, package in deg C
 Performance Counters:

• Effective frequency
• Instructions retired

 Enables studies on
 Advance performance measurements
 Power measurements
 Control for over-provisioned systems

Accessing MSR Data

 Special assembly instructions in kernel space (ring 0)
 rdmsr, wrmsr

 User level access through MSR kernel module
 Provides filesystem interface to all of the MSRs through

/dev/cpu/X/msr
 No finer-grained permissions

 Access to MSR: rdmsr & wrmsr tool
 $> sudo modprobe msr
 $> sudo rdmsr -p <cpu_id> -d -f <high bit>:<lower bit> <hex_reg>
 $> sudo wrmsr -p <cpu_id> <hex_reg>

Problem to solve

 No access/control for regular users in existing interfaces due to:
 Security Concerns

• Full access to MSRs could allow you to “root” the machine
• Pointer to the vector of hardware interrupt handlers is held

in an MSR
 Permissions

• All or nothing access
 Complexity in Registers

• Error prone

Solution

 MSR kernel module + file permissions
 Only allow “trusted” users to have access with standard linux permissions
 Access through /dev/cpu/#/msr_safe
 msrmod: equivalent tool of rdmsr and wrmsr but it is based on MSR_SAFE driver

 Whitelist
 Bit level granularity
 Access to power, thermal, and performance counters/controls
 Formatted with tables to match Intel manuals (relatively easy to add new

registers)
 Configuration through /dev/cpu/msr_whitelist

MSR_SAFE: kernel module developed by LLNL

https://github.com/LLNL/msr-safe

https://github.com/LLNL/msr-safe

Example whitelist

Example whitelist permissions

Convenient access
through Libmsr

 Companion library developed at LLNL
 Call high level library functions such as:

• dump_thermal_terse()
• dump_rapl_limit(…)

 Build your own with easy to use:
• Structs
• Lower level functions

 The library will do:
• Error Checking
• Low Level Work

https://github.com/LLNL/libmsr

https://github.com/LLNL/libmsr

Variorum:
Vendor-neutral user space library for

hardware control knobs
 Platform-agnostic simple front-facing APIs

 Security layer provided to ensure safe,
reliable operation

 Batching interfaces minimizing overheads of
reading/writing many MSRs

 Production version of libmsr, which
targeted Intel architectures

 C-based library

 Function pointers to specific
implementation for target architecture

Intel
RAPL

IBM
OPAL

IBM+NVIDIA
Power Shifting Ratio

ARM
DVFS

NVIDIA
NVML

AMD
APM

Variorum

https://github.com/LLNL/variorum

developed by

https://github.com/LLNL/libmsr

References

• http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf

• https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt

• https://people.cs.pitt.edu/~kirk/cs3150spring2010/ShiminChen.pptx

• Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes:

1, 2A, 2B, 2C, 3A, 3B, 3C and 3D

• Intel® Xeon Processor E5 and E7 v3 Family Uncore Performance Monitoring Reference

Manual

• Source code of Linux kernel from 3.10 to 4.6 (www.kernel.org)

http://events.linuxfoundation.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://people.cs.pitt.edu/%7Ekirk/cs3150spring2010/ShiminChen.pptx
http://www.kernel.org/

Follow-up

Running Average Power Limit
RAPL

RAPL interfaces provide mechanisms to enforce power consumption limit. RAPL interfaces consist of non-architectural
MSRs. RAPL expose multiple domains (power planes) of power rationing within each processor socket. Each RAPL domain
supports the following set of capabilities:

• Power limit - MSR interfaces to specify power limit, time window; lock bit,
clamp bit etc.

• Energy Status - Power metering interface providing energy consumption
information.

• Policy (Optional) - 4-bit priority information that is a hint to hardware for
dividing budget between sub-domains in a parent domain.

• Perf Status (Optional) - Interface providing information on the performance
effects (regression) due to power limits. It is defined as a duration metric that
measures the power limit effect in the respective domain. The meaning of
duration is domain specific.

• Power Info (Optional) - Interface providing information on the range of
parameters for a given domain, minimum power, maximum power etc.

Each of the above capabilities requires specific units in order to describe them. Power is expressed in
Watts, Time is expressed in Seconds, and Energy is expressed in Joules. Scaling factors are supplied to each
unit to make the information presented meaningful in a finite number of bits.

RAPL – Time Units and Domains

Units for power, energy, and time are exposed in the read-only MSR_RAPL_POWER_UNIT (0x606) MSR.

• Power Units (bits 3:0): Power related information (in Watts) is based on the multiplier, 1/2^PU; where PU is an unsigned integer
represented by bits 3:0. Default value is 0011b, indicating power unit is in 1/8 Watts increment.

• Energy Status Units (bits 12:8): Energy related information (in Joules) is based on the multiplier, 1/2^ESU; where ESU is an unsigned
integer represented by bits 12:8. Default value is 10000b, indicating energy status unit is in 15.3 micro-Joules increment.

• Time Units (bits 19:16): Time related information (in Seconds) is based on the multiplier, 1/2^TU; where TU is an unsigned integer
represented by bits 19:16. Default value is 1010b, indicating time unit is in 976 microseconds increment.

RAPL support the following RAPL domain hierarchy: entire package (PKG), DRAM, power plane for cores (PP0) and
power plane for uncore graphic device (PP1). Each level of the RAPL hierarchy provides a respective set of RAPL interface
MSRs.

NOTE: PP1 not present in server architectures
DRAM present only in server architectures

RAPL – Package Domain
MSR_PKG_POWER_LIMIT allows a software agent to define power limitation for the package domain.
Power limitation is defined in terms of average power usage (Watts) over a time window. Two power
limits can be specified, corresponding to time windows of different sizes. Each power limit provides
independent clamping control that would permit the processor cores to go below OS-requested state to
meet the power limits. A lock mechanism allow the software agent to enforce power limit settings. Once
the lock bit is set, the power limit settings are static and un-modifiable until next RESET.

• Package Power Limit: Sets the average power usage limit of the package domain corresponding to
related time window. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT

• Enable Power Limit: 0 = disabled; 1 = enabled
• Package Clamping Limitation: Allow going below OS-requested P/T state setting during time

window.
• Time Window for Power Limit: Indicates the time window for power limit.

Time limit = 2^Y * (1.0 + Z/4.0) * Time Unit.
Here “Y” is the unsigned integer value represented by bits 21:17 – 53:49, “Z” is an unsigned integer
represented by bits 23:22 – 55:54. “Time Unit” is specified by the “Time Units” field of
MSR_RAPL_POWER_UNIT.

• Lock: If set, all write attempts to this MSR are ignored until next RESET.

MSR_PKG_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the package domain.
This MSR is updated every ~1msec. It has a wraparound time of around 60 secs when power consumption
is high, and may be longer otherwise.

• Total Energy Consumed: The unsigned integer value represents the total amount of energy consumed
since that last time this register is cleared. The unit of this field is specified by the “Energy Status Units”
field of MSR_RAPL_POWER_UNIT.

MSR_PKG_POWER_INFO is a read-only MSR. It reports the package power range information for RAPL
usage. This MSR provides maximum/minimum values (derived from electrical specification), thermal
specification power of the package domain. It also provides the largest possible time window for software to
program the RAPL interface.

• Thermal Spec Power: The unsigned integer value is the equivalent of thermal specification power of the
package domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power: The unsigned integer value is the equivalent of minimum power derived from electrical
spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Power: The unsigned integer value is the equivalent of maximum power derived from the
electrical spec of the package domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Time Window: The unsigned integer value is the equivalent of largest acceptable value to
program the time window of MSR_PKG_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_PKG_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled due
to the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or T-
state. It has a wrap-around time of many hours.

• Accumulated Package Throttled Time: The unsigned integer value represents the cumulative time (since
the last time this register is cleared) that the package has throttled. The unit of this field is specified by
the “Time Units” field of MSR_RAPL_POWER_UNIT.

RAPL – PP0/PP1 Domain
MSR_PP0_POWER_LIMIT/MSR_PP1_POWER_LIMIT allow a software agent to define power limitation for
the respective power plane domain. A lock mechanism in each power plane domain allows the software
agent to enforce power limit settings independently. Once a lock bit is set, the power limit settings in that
power plane are static and un-modifiable until next RESET.

• Power Limit: Sets the average power usage limit of the respective power plane domain. The unit of
this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit: 0 = disabled; 1 = enabled.
• Clamping Limitation: Allow going below OS-requested P/T state setting during time window.
• Time Window for Power Limit: Indicates the length of time window over which the power limit will

be used by the processor. The numeric value encoded by bits 23:17 is represented by the product
of 2^Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the
fraction digit represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit
of this field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock: If set, all write attempts to the MSR and corresponding policy
MSR_PP0_POLICY/MSR_PP1_POLICY are ignored until next RESET.

MSR_PP0_ENERGY_STATUS/MSR_PP1_ENERGY_STATUS are read-only MSRs. They report the actual
energy use for the respective power plane domains. These MSRs are updated every ~1msec.

• Total Energy Consumed: The unsigned integer value represents the total amount of energy
consumed since the last time this register was cleared. The unit of this field is specified by the
“Energy Status Units” field of MSR_RAPL_POWER_UNIT.

MSR_PP0_POLICY/MSR_PP1_POLICY provide balance power policy control for each power plane by
providing inputs to the power budgeting management algorithm. On platforms that support PP0 (IA cores)
and PP1 (uncore graphic device), the default values give priority to the non-IA power plane. These MSRs
enable the PCU to balance power consumption between the IA cores and uncore graphic device.

• Priority Level: Priority level input to the PCU for respective power plane. PP0 covers the IA processor
cores, PP1 covers the uncore graphic device. The value 31 is considered highest priority.

MSR_PP0_PERF_STATUS is a read-only MSR. It reports the total time for which the PP0 domain was throttled
due to the power limits. This MSR is supported only in server platform. Throttling in this context is defined as
going below the OS-requested P-state or T-state.

• Accumulated PP0 Throttled Time: The unsigned integer value represents the cumulative time (since the
last time this register is cleared) that the PP0 domain has throttled. The unit of this field is specified by the
“Time Units” field of MSR_RAPL_POWER_UNIT.

RAPL – DRAM Domain
MSR_DRAM_POWER_LIMIT allows a software agent to define power limitation for the DRAM domain.
Power limitation is defined in terms of average power usage (Watts). A power limit can be specified along
with a time window. A lock mechanism allow the software agent to enforce power limit settings. Once the
lock bit is set, the power limit settings are static and un modifiable until next RESET.

• DRAM Power Limit: Sets the average power usage limit of the DRAM domain corresponding to time
window. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Enable Power Limit: 0 = disabled; 1 = enabled.
• Time Window for Power Limit: Indicates the length of time window over which the power limit will

be used by the processor. The numeric value encoded by bits 23:17 is represented by the product
of 2^Y *F; where F is a single-digit decimal floating-point value between 1.0 and 1.3 with the
fraction digit represented by bits 23:22, Y is an unsigned integer represented by bits 21:17. The unit
of this field is specified by the “Time Units” field of MSR_RAPL_POWER_UNIT.

• Lock: If set, all write attempts to this MSR are ignored until next RESET.

MSR_DRAM_ENERGY_STATUS is a read-only MSR. It reports the actual energy use for the DRAM domain.
This MSR is updated every ~1msec.

• Total Energy Consumed: The unsigned integer value represents the total amount of energy
consumed since that last time this register is cleared. The unit of this field is specified by the
“Energy Status Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_POWER_INFO is a read-only MSR. It reports the DRAM power range information for RAPL
usage. This MSR provides maximum/minimum values (derived from electrical specification), thermal
specification power of the DRAM domain. It also provides the largest possible time window for software to
program the RAPL interface.

• Thermal Spec Power: The unsigned integer value is the equivalent of thermal specification power of the
DRAM domain. The unit of this field is specified by the “Power Units” field of MSR_RAPL_POWER_UNIT.

• Minimum Power: The unsigned integer value is the equivalent of minimum power derived from electrical
spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Power: The unsigned integer value is the equivalent of maximum power derived from the
electrical spec of the DRAM domain. The unit of this field is specified by the “Power Units” field of
MSR_RAPL_POWER_UNIT.

• Maximum Time Window: The unsigned integer value is the equivalent of largest acceptable value to
program the time window of MSR_DRAM_POWER_LIMIT. The unit of this field is specified by the “Time
Units” field of MSR_RAPL_POWER_UNIT.

MSR_DRAM_PERF_STATUS is a read-only MSR. It reports the total time for which the package was throttled
due to the RAPL power limits. Throttling in this context is defined as going below the OS-requested P-state or
T-state. It has a wrap-around time of many hours.

• Accumulated Package Throttled Time: The unsigned integer value represents the cumulative time (since
the last time this register is cleared) that the DRAM domain has throttled. The unit of this field is specified
by the “Time Units” field of MSR_RAPL_POWER_UNIT.

	Intel Power Management�&�MSR_SAFE
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Performance and Energy Bias Hint support
	Intel P-State �Machine Specific Registers (MSR)
	Hardware-coordination feedback mechanism APERF/MPERF
	Intel SpeedShift Technology �HWP (aka Hardware P-States)
	Configuration of �Intel SpeedShift Technology (HWP)
	Uncore Frequency Scaling
	Sysfs for intel_pstate (and cpufreq)
	Turbo and AVX Frequencies
	Recap and Numbers (1):�Turbo frequencies
	Recap and Numbers (1):�TurboAVX frequencies [SKY]
	Recap and Numbers (1):�Turbo/AVX frequencies [HSW,SKY]
	Recap and Numbers (2):�AVX frequencies [SKY]
	Recap and Numbers (2):�AVX frequencies [SKY]
	Recap and Numbers (2):�AVX frequencies [SKY]
	Frequency also dependent�on data [SKY]
	Intel On-chip Power Manager
	Intel On-chip Power Manager�for Core Frequency [HSW,SKY]
	Intel On-chip Power Manager�for Uncore Frequency [SKY]
	Intel On-chip Power Manager�for Uncore Frequency [SKY]
	Intel On-chip Power Manager�for Uncore Frequency [SKY]
	Intel On-chip Power Manager�for Uncore Frequency [SKY]
	Intel On-chip Power Manager�for Uncore Frequency [SKY]
	Dynamic Duty Cycle Modulation �DDCM (aka T-States)
	Dynamic Duty Cycle Modulation �DDCM (aka T-States)
	RAPL
	HW Power Control - RAPL
	RAPL – Usage scenarios
	RAPL – Mechanism
	Slide Number 34
	Idle State (aka C-states)
	Slide Number 36
	Do not trust the last slide
	HLT & MWAIT Instructions
	C-State Transitions
	Slide Number 40
	Transition times from CX to C0�depend on
	Transition times from C0 to CX
	OS Power Governor
	OS Power Governor�intel_pstate
	Intel P-state driver: intel_pstate
	Intel P-State Algorithm – PID control
	Intel P-State – Userspace governor
	Idle governors
	Configuration of Idle States: intel_idle vs acpi_idle
	Dynamic control of C-States
	Slide Number 51
	MSR & MSR_SAFE
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	References
	Follow-up
	Running Average Power Limit RAPL
	RAPL – Time Units and Domains
	RAPL – Package Domain
	RAPL – PP0/PP1 Domain
	RAPL – DRAM Domain

